
Deep Structure From Motion

Abhishek Mangla, Sheng-Yu Wang, and Aarash Heydari

Abstract— We modified an existing unsupervised learning
framework for the task of monocular depth and camera motion
estimation from unstructured video sequences. The baseline
model jointly trains on estimating a cameras motion relative to
a rigid scene and Depth Estimation using the spatial structure
of a target scene. The model synthesizes a novel view of the
target scene which seen from a different camera pose and is
used a supervisory signal. Our modified approach attaches
a Mask R-CNN to segment images into different objects.
We incorporate an additional loss function promoting depth
gradients around object segments to sharpen our depth maps
around object boundaries. Empirical evaluation on the KITTI
dataset indicates that our approach performs slightly better
than the baseline.

I. INTRODUCTION

Two of the core problems in computer vision are depth
estimation, defined as learning the 3D spatial structure of a
scene from images, and egomotion, defined as estimating the
3D motion of a camera within a rigid environment [3]. Being
able to estimate depth and egomotion is a given capability
for humans and a good example of exercising it is driving:
people have a good sense of how far away things are from
their car while constantly changing their visions degrees of
freedom (such as by moving ones head left or right). Another
motivating example is how important visual odometry is for
the Mars Exploration Rovers, which must determine their
position and orientation in respect to a stream of images in
real-time [2]. With the advent of autonomous cars and small
robots zooming on college campuses, the ability to perceive
depth from images is useful for preventing collisions while
enabling smoother modes of operation.

Before the 2000s, approaches to depth estimation and
egomotion focused on non-neural network techniques such
as carefully designing optimal image processing algorithms.
A comparison of the six most competitive algorithms at
the time revealed the major differences in approaches: some
computed translational velocity first while others computed
rotational velocity first, some used numerical optimization
methods, some compensated for bias, and others were based
on motion parallax versus epipolar constraint [1].

A. Background

In the last two decades however, convolutional neural
networks have been getting more interest and better results
for particular problems in depth estimation and egomotion
[4]. Computer vision algorithms have found success in
feeding labeled image sequences into varying neural network
architectures that output inferences for camera motion [3].
This is typically done using feature detection to construct an
optical flow from two image frames in a sequence generated

from either single cameras (monocular visual odometry) or
two cameras (stereo VO). Stereo VO provides the system
with more information because the image pairs can be used
to reduce error and provide additional depth and scale infor-
mation [5] [6]. For our project, we focused on monocular
VO.

A recent paper by Google researchers and Tinghui Zhou
at Berkeley illustrates using a fully convolutional architec-
ture akin to DispNet[8] which simultaneously trains two
networks - one that infers depth from one single image,
and another one that infers camera pose and explainability
[7] given multiple views of the scene. Training occurs in
an unsupervised fashion, i.e. training does not use ground
truth depth maps nor ground truth pose transformations.
Instead, the baseline model reconstructs a target view and
computes the reconstruction loss as a means of training
the network. More specifically, it uses the depth map of
a target image, nearby views to the target, and relative
pose transformations between nearby views and the target in
order to synthesize a reconstruction of the target image. The
photometric reconstruction loss is used as the supervisory
signal which trains the depth and pose networks.

By training the task of view reconstruction, the network is
forced to improve at the intermediate tasks of depth and pose
estimation. Even though this is an unsupervised approach,
the results are on par with similar supervised approaches as
illustrated from example video sequences from the KITTI
dataset [13].

B. Problem Statement

The depth maps of the baseline model are often blurry
and diffuse, and other methods are known to perform better.
For the practical purpose of enabling robots to see and
avoid obstacles, we wanted to specifically strengthen the
depth maps around objects in the image. Therefore, the goal
of our project is to improve the results in Unsupervised
Learning of Depth and Ego-Motion from Video to produce
sharper depth maps that are more attentive to objects in the
image without sacrificing quality. Thus, we introduced an
object segmentation network into the model and added a new
loss signal to promote depth gradients at object boundaries.
We tested different neural net hyperparameters. In some
experiments, our new loss term regulated the first order
gradient of the depth map, and in others, we regulated the
second order gradient. As evaluation metrics of our depth
maps, we used four metrics of ”error” relative to ground
truth (Absolute Relative Error, Squared Relative Error, Root
Mean Squared Error, and Log Root Mean Squared Error)
and three metrics of ”accuracy”, defined as percentage of

classifications which were epsilon-close to the ground truth
for three different values of epsilon.

C. Data Sources

KITTI [13] is a rich benchmark dataset used for many
computer vision tasks. It contains short timestamped image
sequences of views from a driving car, captured and synchro-
nized at 10 Hz. We used their ”synced + rectified” processed
dataset, where imaged have been undistorted and where the
data frame numbers correspond across sensor streams. There
are around 45K image frames in total. All images we are
using are in color, come from a 0.5 megapixel camera, and
are saved in png format.

II. APPROACH

A. Baseline model

The baseline model consists of two disjoint CNN architec-
ture, with one predicting the depth of an image and the other
predicting the relative pose of the camera between image
views. Given a target image and other source images from
the same scene with slightly different camera pose, the Depth
CNN takes the target image as input and performs a single-
frame depth estimation. Architecture-wise, the Depth CNN
adopts DispNet architecture, which outputs a disparity map
at multiple scales given a single-frame input. Note that a
disparity map is the inverse of a depth map.

On the other hand, the Pose CNN takes in both target
image and its nearby views and estimates the relative poses
between the target frames and its source frames. With camera
intrinsics given in the data and estimations from both models,
one can then calculate projections and synthesize novel views
of a target image from the original source image sequence. A
graphical representation can be seen in Fig 1, and the more
detailed architecture can be seen in Fig 2.

Mathematically, let It be the target image,
< I1, . . . , In >∈ S denote the source image sequence, and
< Î1, . . . , În > be the view syntheses of the target image
with the corresponding source images. The view synthesis
loss can be constructed as follows:

Lvs =
∑

<I1,...,In>∈S

∑
p

Ês(p)|It(p)− Îs(p)| (1)

The loss is calculating the `-1 loss over pixels between
the target image and its novel view syntheses. Note that
Ês serves as an explanability mask which is learned to
ignore areas that violate the model assumptions. This is
important because the naive view synthesis loss is con-
structed based on three large assumptions. 1) The scenes
are static, meaning variation from image to image is due
entirely to the motion of the camera. 2) All surfaces are
lambertian, meaning the luminous intensity of the surface
appears the same regardless of the observer’s angle of view.
3) There is no occlusion/disocclusion between the target view
and source views. These assumptions are unrealistic and so
they present significant limitations. In order to model the
limitation of the model, the explainability mask Ês is used
as a per-pixel soft mask that provides slack to areas that

Fig. 1. Sequence of images feeds into two neural nets that help create a
depth map

Fig. 2. Network architecture for the baseline depth/pose/explainability
prediction modules. The width and height of each rectangular block indicates
the output channels and the spatial dimension of the feature map at
the corresponding layer respectively, and each reduction/increase in size
indicates a change by the factor of 2. (a) For single-view depth, the model
adopt the DispNet [8] architecture with multi-scale side predictions. The
kernel size is 3 for all the layers except for the first 4 conv layers with
7, 7, 5, 5, respectively. The number of output channels for the first conv
layer is 32. (b) The pose and explainabilty networks share the first few conv
layers, and then branch out to predict 6-DoF relative pose and multi-scale
explainability masks, respectively. The number of output channels for the
first conv layer is 16, and the kernel size is 3 for all the layers except for the
first two conv and the last two deconv/prediction layers where the model
use 7, 5, 5, 7, respectively.

the network believes view synthesis will not be successful.
To avoid a trivial solution where the explanability mask is
zero everywhere, the baseline model applies a regularization
term Lreg for the mask, which is a cross-entropy loss with
constant label 1 at each pixel location. This regularization
enforces non-zero predictions of the explanability mask. In
addition, a regularization on the second order gradient of
the disparity map Lsmooth is applied to encourage a smooth
depth estimation. Combining everything and calculating loss
on every scale of the disparity map, the total loss for the
baseline model will be as follows:

Ltot =
∑
l

Ll
vs +

λs
2l
Ll
smooth + λm

∑
S

Lreg(Êl
s) (2)

λs and λm are smoothness weight and explanability
weight respectively, and both of them are hyperparameters
to be tuned.

B. Final model

To encourage sharpness of the depth map on object bound-
aries, our model adds an additional regularization term on the

Fig. 3. The final model architecture. The main difference from the baseline is that the input view feeds into the Mask R-CNN which outputs a segmentation
mask. This is used to produce a gradient map outlining object boundaries. These boundaries are used to evaluate our additional loss which is combined
with the baseline model loss.

baseline model to encourage the gradients of the disparity
map on object boundaries. The reason for calculating the
gradients of the disparity map is that depths have an inverse
relation with respect to the pixel space for planar geometry.
Therefore, the gradients of the depth map will diverge to
infinity at the vanishing point of the scene, which is definitely
not an ideal behavior for our object boundary matching
regularization. On the other hand, disparity maps, which are
the inverse of the depth maps, have a nice linearity with
respect to pixels. The linearity makes the 1st order gradients
of the disparity map constant on planes and further makes
the 2nd order gradients to be 0 for planes. In a nutshell,
taking gradients on disparity maps instead of depth maps
prevents huge gradients close to the vanishing horizon while
still preserves large gradients on the object boundaries, so
the gradients of the disparity map will be relatively larger
on the object boundaries given that the depth estimation is
correct.

To obtain the object boundary, the target image is passed
into a trained Mask R-CNN model to get segmentation mask
predictions. The boundary is the gradient intensity of the
segmentation masks, which will be further discussed in the
data preparation section.

With the object boundary G1 and the gradient map G2 of
the disparity map, the object boundary matching loss Lseg

is formulated as follows:

Lseg =
∑
(x,y)

G2
1(x, y) ·max(0, G1(x, y)−G2(x, y)) (3)

The loss penalizes weak gradients at object boundaries,
since G2(x, y) gives contribution to the loss when it’s smaller
than G1(x, y). On the other hand, the G2

1(x, y) serves as a
mask to prevent loss contribution to pixels where there’s no
object boundary response. The term is squared for empir-
ical reasons. We experimented both the 1st and 2nd order
gradients of disparity map for G2 to see which one works
better.

The new total loss for our final model will be the sum
of Eq (2) and Eq (3) weighted by the segmentation weight
λseg .

C. Data Preparation

Given a target image of size 1226x370, we scale it down
to 416x128 and then compress it with JPG. We then hori-
zontally stack the target image with all its associated source
images as well as the object boundary image generated by
the Mask R-CNN. This stacked image is one training sample.
Each training sample also comes with camera intrinsics in
a text file. This data includes focal points, angles, principle
points, and other camera specifics.

To obtain object boundaries, we first pass in the downsized
target image into Mask R-CNN to get the object segmen-
tation masks. We then calculate the gradient intensity by

Fig. 4. Compression of a target image.

Fig. 5. Single training sample with stacked images along with object
boundary image.

applying both horizontal and vertical sobel filter and taking `-
2 norm of the two gradient responses. The gradient intensity
map will be the object boundaries for the target image.

D. Training Details

We did not train our final model from scratch. Rather, we
took the weights of the depth and pose networks trained by
the baseline model after approximately 190,000 iterations of
training. These weights were made downloadable by Zhou
et. al. We using the processed KITTI dataset, which consists
of around 40,000 training samples, to fine-tune the model.
We fine-tuned those networks for 35,000 more iterations
with batch size 4, trying different hyperparameters for the
weight of our additional segmentation loss, the weight of the
smoothness regularizer, and the learning rate of ADAM. We
experimented with restarting ADAM’s momentum when we
began fine-tuning with our additional loss or letting it keep its
momentum from the training of the baseline. In most of our
experiments, we used the object segmentation to regulate the
first order disparity gradient, but in some we tried regulating
the second order disparity gradient instead.

Another detail about our training is that the base model
was trained using the explainability mask as described above,
but in our fine-tuning we disabled the explainability mask
for the sake of simplicity and to lower the computational
complexity of each iteration.

It would be interesting for future work to see how results
would compare if our final model was trained from scratch
using the explainability mask and with a more deeply rigor-
ous hyperparameter search.

III. RESULTS

A. Depth Prediction Performance

We evaluate the depth prediction performances on the
697 images from the test split of the KITTI dataset. Our

Fig. 6. Results from the overfit model with λseg = 100, λs = 0.5

results are summarized in Fig. 8 and the visual difference
between our model and the baseline model and ground
truth are displayed in Fig. 7. Only one of our models had
better empirical results on the test set than the baseline. It
was trained for 35,000 iterations by restarting the ADAM
optimizer’s momentum, slightly increasing the smoothness
regularization weight from 0.5 (baseline) up to 0.75, and
using 2.5 as the weight of the new segmentation loss term.

In terms of squared relative error, this model achieved
1.8053 versus the 1.8363 of baseline. The absolute and root
mean squared errors were both less than baseline as well.
Accuracy on the smallest value of epsilon also improved
from 0.717 to 0.743. Visually, our model is similar to
baseline yet noticeably better. For example, in the first row
of images in Fig. 8, the boundary of the car’s depth into the
road is better captured by our model than the baseline which
was the goal of including object segmentation into the loss.

B. Overfit Model

One surprising but interesting result is our overfit model
which used the hyperparameters λseg = 100 and λs = 0.5
and used segmentation to regulate the 1st order gradient.
It exhibited an extremely jagged and bar-like depth pattern
around objects, as seen in Fig 6. The jagged and bar-like
depth patterns correspond to large gradient intensities, which
indicates that the Depth CNN had learned to maximize the
gradients around object boundaries in order to minimize
the boundary matching loss. However, the jagged patterns
contributes to higher smooth regularization loss and view
synthesis loss. In this case, the segmentation weight was too
large so that the model overfitted at the cost of violating
the smooth depth map constraint, resulting in an extremely
unnatural looking depth map. One thing to notice is that the
segmentation loss and the smoothness regularization pull the
model in different directions, as the segmentation loss favors
sudden sharp gradients on objects boundaries, which incurs
high 2nd order gradients for both gradient settings, while the
smooth loss penalizes high second order gradients over the
entire disparity map. This realization motivated us to slightly
increase the smoothness loss during our hyperparameter
search and to be weary of setting the segmentation weight
too large.

IV. TOOLS

We used Tensorflow to modify and implement our addi-
tional loss function. Tensorflow was the original framework
used by Zhou in the original paper, so it was a natural
extension to continue using it. We also used Numpy to do
our custom data processing which involved compression and
horizontal stacking of 3 images with an object segmented
image.

For the image segmentation neural network model, we
used Python 3.4, TensorFlow 1.3, and Keras 2.0.8. Keras,
which is a high level wrapper over Tensorflow, helped us run
and evaluate the Mask R-CNN models on provided weights
to validate original source results. We did not have to write
any code for this.

Fig. 7. Comparison of single-view depth estimation between Zhou et al. [7], and ours. The ground-truth depth map is interpolated from sparse measurements
for visualization purpose.

V. LESSONS LEARNED

The first lesson we learned was to know and download our
data well before beginning the task itself. We underestimated
the size of our dataset and the time to download and
preprocess took nearly 3 days which was expensive to say
the least.

Moreover, depth for planar objects (e.g. ground, walls)
in the image is not linear with respect to pixels, and the
farther parts of the scene generate larger gradients in the
depth map. That is, as parts of the scene are closer to the
horizon, the difference in depth across one pixel increases
dramatically, which causes issues for calculating the object
boundaries using gradients. In order to fix this, we needed to
first calculate the disparity map (1 / depth) to linearize the
depths, and then calculate the gradients.

We noticed that the second order gradient smoothness
regularization from the baseline model and our additional
segmentation loss were pulling the model in different di-
rections. Our segmentation loss wanted the model to learn
sudden, sharp changes in depth at object boundaries, but
the smoothness regularizer penalized large second order
gradients everywhere in the image. Our model which overfit

the segmentation (Fig. 6) illustrates why depth maps should
generally be smooth, or else they look completely unnatural.
The exception is at boundaries of objects, where occlusion
causes sudden change in depth. We had this in mind while
doing our hyperparameter search.

Finally, the Mask R-CNN does not segment trees, only
objects such as pedestrians and cars. We only were able to
improve sharpness of depth maps on images that contains
objects segmented by mask R-CNN so this means that our
performance is limited by how well the R-CNN is trained.
This dependency on 3 neural net architectures instead of 2
meant we had to train a lot more to get good results.

VI. TEAM CONTRIBUTIONS

Abhishek Mangla: I helped draft our poster’s background
and introduction sections, worked on diagrams for the poster
and drafted the report. I also helped pinpoint places in code
where we would have to make changes to incorporate our
new loss function.

Sheng-Yu Wang: I worked on downloading the KITTI
dataset and preprocessing the data. Also, I designed and
experimented with different boundary matching loss function

Fig. 8. Summary of the results of our hyperparameter search

Fig. 9. Summary of results of other supervised approaches. Some approaches supervised the depth estimation, and others supervised the pose estimation.
”K” in the dataset column indicates that the KITTI dataset was used, and ”CS” refers to the Cityscape dataset [12]. Unsurprisingly, the strongest state-of-
the-art supervised approaches outperform our best model, but our performance is still quite competitive.

and Mask R-CNN object boundary retrievals. I helped with
model training and reports as well.

Aarash Heydari: I performed training and hyperparameter
search for the final model. I substantially wrote and edited
the presentations and final report.

REFERENCES

[1] Tian, T.; Tomasi, C.; Heeger, D. (1996). ”Comparison of Approaches
to Egomotion Computation”. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition: 315.

[2] Maimone, M.; Cheng, Y.; Matthies, L. (2007). ”Two years of Visual
Odometry on the Mars Exploration Rovers”. Journal of Field Robotics.
24 (3): 169186.

[3] Irani, M.; Rousso, B.; Peleg S. (June 1994). ”Recovery of Ego-Motion
Using Image Stabilization” (PDF). IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition: 2123. Retrieved 7
June 2010

[4] Vijayanarasimhan, Sudheendra, et al. ”Sfm-net: Learning of structure
and motion from video.” arXiv preprint arXiv:1704.07804 (2017).

[5] Tulsiani, Shubham, et al. ”Multi-view supervision for single-view
reconstruction via differentiable ray consistency.” CVPR. Vol. 1. No.
2. 2017.

[6] Milella, A.; Siegwart, R. (January 2006). ”Stereo-Based Ego-Motion
Estimation Using Pixel Tracking and Iterative Closest Point” (PDF).
IEEE International Conference on Computer Vision Systems: 21.
Retrieved 7 June 2010.

[7] Zhou, Tinghui, et al. ”Unsupervised learning of depth and ego-motion
from video.” CVPR. Vol. 2. No. 6. 2017.

[8] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy,
and T. Brox. A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4040 4048, 2016

[9] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a
single image using a multi-scale deep network. In Advances in Neural
Information Processing Systems, 2014.

[10] F. Liu, C. Shen, G. Lin, and I. Reid. Learning depth from single
monocular images using deep convolutional neural fields. IEEE trans-
actions on pattern analysis and machine intelligence, 38(10):20242039,
2016.

[11] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised monoc-
ular depth estimation with left-right consistency. In Computer Vision
and Pattern Recognition, 2017.

[12] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R.
Benenson, U. Franke, S. Roth, and B. Schiele. The Cityscapes
dataset for semantic urban scene understanding. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pages 32133223, 2016.

[13] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous
driving? The KITTI vision benchmark suite. In Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages
33543361. IEEE, 2012.

